NERSC's 10 year plan

Sudip Dosanjh Director

March 19, 2013

NERSC Overview

NERSC History

Cray T3E Mcurie - 1996

IBM Power3 Seaborg - 2001

1974	Founded at Livermore to support fusion research with a CDC system							
1978	Cray 1 installed							
1983	Expanded to support today's DOE Office of Science							
1986	ESnet established at NERSC							
1994	Cray T3D MPP testbed							
1994 - 2000	Transitioned users from vector processing to MPP							
1996	Moved to Berkeley Lab							
1996	PDSF data intensive computing system for nuclear and high energy physics							
1999	HPSS becomes mass storage platform							
2006	Facility wide filesystem							
2010	Collaboration with JGI							
	BERKELEY LAB							

NERSC collaborates with computer companies to deploy advanced HPC and data resources

- Hopper (N6) and Cielo (ACES) were the first Cray petascale systems with a Gemini interconnect
- Edison (N7) will be the first Cray petascale system with Intel processors, Aries interconnect and Dragonfly topology (serial #1)
- N8 and Trinity (ACES) are being jointly designed as on-ramps to exascale
- Architected and deployed data platforms including the largest DOE system focused on genomics
- One of the first facility-wide filesystems

We employ experts in high performance computing, computer systems engineering, data, storage and networking

- We are the primary computing facility for DOE Office of Science
- DOE SC allocates the vast majority of the computing and storage resources at NERSC
 - Six program offices allocate their base allocations and they submit proposals for overtargets
 - Deputy Director of Science prioritizes overtarget requests
- Usage shifts as DOE priorities change

We focus on the scientific impact of our users

- 1500 journal publications per year
- 10 journal cover stories per year on average
- Simulations at NERSC were key to two Nobel Prizes (2007 and 2011)
- Supernova 2011fe was caught within hours of its explosion in 2011, and telescopes from around the world were redirected to it the same night
- Data resources and services at NERSC played important roles in two of Science Magazine's Top Ten Breakthroughs of 2012 the discovery of the Higgs boson and the measurement of the Θ_{13} neutrino weak mixing angle
- MIT researchers developed a new approach for desalinating sea water using sheets of graphene, a one-atom-thick form of the element carbon.
 Smithsonian Magazine's fifth "Surprising Scientific Milestone of 2012."
- Four of Science Magazine's insights of the last decade (three in genomics, one related to cosmic microwave background)

We support a broad user base

- 4500 users, and we typically add 350 per year
- Geographically distributed: 47 states as well as multinational projects

We support a diverse workload

- Many codes (600+) and algorithms
- Computing at scale and at high volume

Science

Our operational priority is providing highly available HPC resources backed by exceptional user support

We maintain a very high availability of resources (>90%)

 One large HPC system is available at all times to run largescale simulations and solve high throughput problems

- One-on-one consulting
- Training (e.g., webinars)
- Extensive use of web pages
- We solve or have a path to solve 80% of user tickets within three business days

Number of NERSC Users and User Tickets Created per Year

NERSC Today

NERSC Systems

	Hopper	Edison	Mira	Titan	
Peak Flops (PF)	1.29	>2.2	10.0	5.26 (CPU) 21.8 (GPU)	
CPU cores	152,408	>100,000	786,432	299,008 (CPU) 18,688 (GPU's)	
Frequency (GHz)	2.1	2.4	1.6	2.2 (CPU) 0.7 (GPU)	
Memory (TB)	217	333	786	598 (CPU) 112 (GPU)	
Memory/node (GB)	32	64	16	32 (CPU) 6 (GPU)	
Memory BW* (TB/s)	331	442	1406	614 (CPU) 3,270 (GPU)	
Memory BW/node* (GB/s)	52	85	29	33 (CPU) 175 (GPU)	
Filesystem	2 PB 70 GB/s	6.4 PB 140 GB/s	35 PB 240 GB/s	10 PB 240 GB/s	
Sq ft	1956	1200	~1500	4352	
Power (MW Linpack)	2.91	2.10	3.95	8.21	

Forecasting

Requirements with six program offices

- Reviews with six program offices every three years
- Program managers invite representative set of users (typically represent >50% of usage)
- Identify science goals and representative use cases
- Based on use cases, work with users to estimate requirements
- Re-scale estimates to account for users not at the meeting (based on current usage)
- Aggregate results across the six offices
- Validate against information from indepth collaborations, NERSC User Group meetings, user surveys

Tends to underestimate need because we are missing future users

http://www.nersc.gov/science/requirements-reviews/final-reports/

Keeping up with user needs will be a challenge

Computing at NERSC

Keeping up with user needs will be a challenge (cont.)

Office of Science Production Computing

Future archival storage needs

Exponentially increasing data traffic

NERSC users import more data than they export!

Increased data emphasis in requirements reviews

- **BER (2017 draft):** "Access to more computational and storage resources ... and the ability to access, read, and write data at a rate far beyond that available today"
- **HEP (2017 pre-draft):** "Need for more computing cycles and <u>fast-access</u> storage; support for data-intensive science, including
 - Improvements to archival storage
 - Analytics (parallel, DBs, services, gateways etc.)
 - Sharing, curation, provenance of data
- ASCR (2014): "Applications will need to be able to read, write, and store 100s of terabytes of data for each simulation run. Many petabytes of long-term storage will be required to store and share data with the scientific community."
- BES (2014): "[There is a need to support] ... huge volumes of data from the rampup of the SLAC LINAC Coherent Light Source (LCLS) [and other experimental facilities in BES]."
- FES (2014): "[Researchers need] data storage systems that can support high-volume/high-throughput I/O."
- NP (2014): Needs include
 - "Useable methods for cross-correlating across large databases ..."
 - "[...] grid infrastructure, including the Open Science Grid (OSG) interface [...]. "
 - [...] The increased capacity afforded by GPUs has resulted in [...] a significant increase in IO demands in both intermediate and long term storage. "

DOE experimental facilities are also facing extreme data challenges

- The observational dataset for the Large Synoptic Survey Telescope will be ~100 PB
- The Daya Bay project will require simulations which will use over
 128 PB of aggregate memory
- By 2017 ATLAS/CMS will have generated 190 PB
- Light Source Data Projections:

- 2009: 65 TB/yr

2011: 312 TB/yr

2013: 1.9 PB /yr

- EB in 2021?

NGLS is expected to generate data at a terabit per second

Computing Challenges

Laws of Physics will Halt Moore's Law

High-performance Logic Technology Requirements (ITRS 2011)

Year	2012	2013	2014	2015	2016	2017	2018	2019	2020
Gate Length	22	20	18	17	15.3	14	12.8	11.7	10.6
Equivalent Oxide Thickness									
Source-Drain Leakage									
Threshold Voltage									
CV/I Intrinsic Delay									
Total Gate Capacitance									
Drive Current									

- Time line shown for best performing multi-gate transistor technology.
- Similar timelines exist for other functional components; e.g., memory, RF logic.

Science

Clock speeds are expected to stay near 1 GHz

Concurrency is one key ingredient in getting to exaflop/sec

Future gains in supercomputing will be limited by power

Performance Projections - 20MW

Where does the energy go?

Both memory capacity and bandwidth are significant issues for DOE applications

NERSC Strategy

Strategic Objectives

- Meet the ever-growing computing and data needs of our users by
 - providing usable exascale computing and storage systems
 - transitioning SC codes to execute effectively on manycore architectures
 - influencing the computer industry to ensure that future systems meet the mission needs of SC
- Increase the productivity, usability, and impact of DOE's user facilities by providing comprehensive data systems and services to store, analyze, manage, and share data from those facilities

We are deploying the CRT facility to meet the ever- growing computing and data needs of our users

Four story, 140,000 GSF

- Two 20 Ksf office floors, 300 offices
- 20 K -> 29 Ksf HPC floor
- Mechanical floor

42 MW to building

- 12.5 MW initially provisioned
- WAPA power: Green hydro

Energy efficient

- Year-round free air and water cooling
- PUE < 1.1
- LEED Gold

Occupancy Early 2015

Providing usable exascale computing and storage systems

- We made NERSC-7 an x86-based system because our broad user base wasn't ready in 2013 for GPUs, accelerators or greatly increased threading
- We will deploy pre-exascale systems in 2016 (NERSC-8) and 2019 (NERSC-9), and an exascale system in 2022. Our strategy is:
 - Open competition for best solutions
 - Focus on the performance of a broad range of applications, not synthetic benchmarks
 - General-purpose architectures are needed in order to support a wide range of applications, both large-scale simulations and high volumes of smaller simulations
 - Earlier procurements to influence designs
 - Leverage Fast Forward and Design Forward
 - Engage co-design efforts
 - Transition users to a new programming model

Programming Models Strategy

The necessary characteristics for broad adoption of a new pmodel is

- Performance: At least 10x-50x performance improvement
- Portability: Code performs well on multiple platforms
- Durability: Solution must be good for a decade or more
- Availability/Ubiquity: Cannot be a proprietary solution

Our near-term strategy is

- Smooth progression to exascale from a user's point of view
- Support for legacy code, albeit at less than optimal performance
- Reasonable performance with MPI+OpenMP
- Support for a variety of programming models
- Support optimized libraries

Strategy for Transitioning the SC Workload to Energy Efficient Architectures

- We will deploy testbeds to gain experience with new technologies and to better understand emerging programming models and potential tradeoffs.
- We will have in-depth collaborations with selected users and application teams to begin transitioning their codes to our testbeds and to NERSC-8
- We will develop training and online resources to help the rest of our users based on our in-depth collaborations, as well as on results from co-design centers and ASCR research
- We will add consultants with an algorithms background who can help users when they have questions about improving the performance of key code kernels

Strategy for ensuring that future systems meet SC mission requirements

- Partner with Los Alamos and Sandia on procurements in 2016 and 2019. The larger size of these procurements will give us greater leverage with industry
- Provide industry with greater information on NERSC's workload through new and innovative instrumentation, measurement, and analysis
- Actively engage with industry through DOE's Fast Forward and Design Forward programs
- Leverage the Berkeley/Sandia Computer Architecture Laboratory (CAL) that has been established by ASCR
- Serve as a conduit for information flow between computer companies and our user community

Extreme Data Strategy

- Partner with DOE experimental facilities to identify requirements and create early success
- Develop and deploy new data resources and capabilities
- Provide new classes of HPC expertise required for data-intensive workloads
- Leverage ESnet and ASCR research to create end-toend solutions

Unique data-centric resources will be needed

Compute

On-Package DRAM

Capacity Memory

On-node-Storage

In-Rack Storage

Interconnect

Global Shared Disk

Off-System
Network

Compute Intensive Arch

Goal: Maximum
computational density and
local bandwidth for given
power/cost constraint.

Maximizes bandwidth density near compute

Data Intensive Arch

Goal: Maximum data capacity and global bandwidth for given power/cost constraint.

Bring more storage capacity near compute (or conversely embed more compute into the storage).

Requires software and programming environment support for such a paradigm shift

Direct from each node

NERSC System Plan

Projections of Installed Capacity

